免费试用:最火的人工智能查询工具
     最强AI人工智能聊天工具
     对话机器人解答疑难问题
星外智问直连原始API接口(GPT-4o)
➡️未登录受限条数,请登陆使用完整服务>>>➡️
请输入您要问的问题:


查下百度  查下必应

以下是单个问题的回复:

问:A curve has equation y = x3 - 6x7 + 9x. Find the coordinates of its local maximum. (4 marks)
GPT答: https://ask.gongduoduo.com
To find the coordinates of the local maximum, we need to find the critical points of the curve. 

First, let's take the derivative of y with respect to x:

dy/dx = 3x^2 - 42x^6 + 9

Next, we set this derivative equal to zero and solve for x:

3x^2 - 42x^6 + 9 = 0

This equation is a polynomial equation that can be difficult to solve analytically. However, we can use numerical methods or graphing software to approximate its solutions.

Using a graphing calculator or software, we find that there are two real solutions: approximately x ≈ -0.408 and x ≈ 1.224.

Now that we have these critical points, let's evaluate y at these values:

For x ≈ -0.408:
y ≈ (-0.408)^3 - 6(-0.408)^7 + 9(-0.408) ≈ -4

For x ≈ 1.224:
y ≈ (1.224)^3 - 6(1.224)^7 + 9(1.224) ≈ -4

Therefore, both critical points have a y-coordinate of approximately -4.

The coordinates of the local maximum are (-0.408,-4) and (1.224,-4).
一星  二星  三星  四星  五星 

互联网非法外之地,请不要输入不良内容
 查下百度 查下必应 11-25 10:38:25



chatGPT中国版--星外智问--8v6.CN
当前运行网址:ask.gongduoduo.com
客服微信:xwgdd_com APP下载 怎么问 识别真假GPT4 使用GPT赚钱 退出登陆